MATH 119: Quiz 7

Directions:

* Show your thought process (commonly said as "show your work") when solving each problem for full credit.
* If you do not know how to solve a problem, try your best and/or explain in English what you would do.
* Good luck!

1. Solve the equation

$$
2 \cos ^{2} \theta+\sin \theta=1
$$

$$
{ }_{2}^{-1} X_{1}^{\prime} \rightarrow-1+2=1
$$

$$
y^{2}+y+1=0
$$

$$
2-2 \sin ^{2} \theta+\sin \theta-1
$$

$$
(-y+1)(2 y+1)=0
$$

-1

$$
-2 \sin ^{2} \theta+\sin \theta+1=0
$$

Let $y=\sin \theta$. Then
$\quad \sin \theta=1$
(1) $\quad \theta=\frac{\pi}{2} \quad f(0,1)$

$$
\text { (2) } 0=\frac{\pi}{2}+2 k \pi
$$

2. Convert $(5,5 \pi)$ into rectangular coordinates.

$$
\begin{gathered}
r=5, \theta=5 \pi \\
x=r \cos \theta=5 \cos 5 \pi=5(-1)=-5 \\
y=r \sin \theta=5 \sin 5 \pi=5 \cdot 0=0 \\
\quad(-5,0)
\end{gathered}
$$

3. Convert $x^{2}+y^{2}=4$ into polar coordinates.

$$
\begin{gathered}
r^{2}=x^{2}+y^{2} \text { so } \\
r^{2}=4 \\
\downarrow \\
r=2
\end{gathered}
$$

4. Convert $r=\frac{1}{\cos \theta-\sin \theta}$

$$
\begin{aligned}
& (\cos \theta-\sin \theta) \cdot r=\frac{1}{\cos \theta-\sin \theta} \cdot(\cos \theta-\sin \theta) \\
& r \cos \theta-r \sin \theta=1 \\
& +x-y=1
\end{aligned}
$$

